The evolution and spread of sulfur cycling enzymes reflect the redox state of the early Earth

Author:

Mateos Katherine12ORCID,Chappell Garrett13ORCID,Klos Aya1,Le Bryan1,Boden Joanne4ORCID,Stüeken Eva4ORCID,Anderson Rika15ORCID

Affiliation:

1. Carleton College, Northfield, MN, USA.

2. Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA, USA.

3. Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

4. University of St. Andrews, School of Earth and Environmental Sciences, Bute Building, Queen’s Terrace, St Andrews, Fife KY16 9TS, UK.

5. NASA NExSS Virtual Planetary Laboratory, University of Washington, Seattle, WA, USA.

Abstract

The biogeochemical sulfur cycle plays a central role in fueling microbial metabolisms, regulating the Earth’s redox state, and affecting climate. However, geochemical reconstructions of the ancient sulfur cycle are confounded by ambiguous isotopic signals. We use phylogenetic reconciliation to ascertain the timing of ancient sulfur cycling gene events across the tree of life. Our results suggest that metabolisms using sulfide oxidation emerged in the Archean, but those involving thiosulfate emerged only after the Great Oxidation Event. Our data reveal that observed geochemical signatures resulted not from the expansion of a single type of organism but were instead associated with genomic innovation across the biosphere. Moreover, our results provide the first indication of organic sulfur cycling from the Mid-Proterozoic onwards, with implications for climate regulation and atmospheric biosignatures. Overall, our results provide insights into how the biological sulfur cycle evolved in tandem with the redox state of the early Earth.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3