Simultaneous multitone microwave emission by dc-driven spintronic nano-element

Author:

Hamadeh Alexandre Abbass1ORCID,Slobodianiuk Denys23ORCID,Moukhader Rayan4ORCID,Melkov Gennadiy2,Borynskyi Vladyslav3ORCID,Mohseni Morteza1,Finocchio Giovanni4ORCID,Lomakin Vitaly5,Verba Roman3ORCID,de Loubens Grégoire6ORCID,Pirro Philipp1ORCID,Klein Olivier7ORCID

Affiliation:

1. Fachbereich Physik and Landesforschungszentrum OPTIMAS, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, 67663 Kaiserslautern, Germany.

2. Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine.

3. Institute of Magnetism, Kyiv 03142, Ukraine.

4. Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, 98166 Messina, Italy.

5. Center for Magnetic Recording Research, University of California San Diego, La Jolla, CA 92093-0401, USA.

6. SPEC, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France.

7. Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, Spintec, 38054 Grenoble, France.

Abstract

Current-induced self-sustained magnetization oscillations in spin-torque nano-oscillators (STNOs) are promising candidates for ultra-agile microwave sources or detectors. While usually STNOs behave as a monochromatic source, we report here clear bimodal simultaneous emission of incommensurate microwave oscillations in the frequency range of 6 to 10 gigahertz at femtowatt level power. These two tones correspond to two parametrically coupled eigenmodes with tunable splitting. The emission range is crucially sensitive to the change in hybridization of the eigenmodes of free and fixed layers, for instance, through a slight tilt of the applied magnetic field from the normal of the nanopillar. Our experimental findings are supported both analytically and by micromagnetic simulations, which ascribe the process to four-magnon scattering between a pair of radially symmetric magnon modes and a pair of magnon modes with opposite azimuthal index. Our findings pave the way for enhanced cognitive telecommunications and neuromorphic systems that use frequency multiplexing to improve communication performance.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3