Biomolecular actuators for genetically selective acoustic manipulation of cells

Author:

Wu Di1ORCID,Baresch Diego2ORCID,Cook Colin1,Ma Zhichao3ORCID,Duan Mengtong4ORCID,Malounda Dina5ORCID,Maresca David5ORCID,Abundo Maria P.5,Lee Justin4ORCID,Shivaei Shirin4ORCID,Mittelstein David R.1ORCID,Qiu Tian6ORCID,Fischer Peer78ORCID,Shapiro Mikhail G.159ORCID

Affiliation:

1. Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.

2. University of Bordeaux, CNRS, Bordeaux INP, I2M, UMR 5295, F-33400 Talence, France.

3. Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany.

4. Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.

5. Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.

6. Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.

7. Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.

8. Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, INF 225, 69120 Heidelberg, Germany.

9. Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA.

Abstract

The ability to physically manipulate specific cells is critical for the fields of biomedicine, synthetic biology, and living materials. Ultrasound has the ability to manipulate cells with high spatiotemporal precision via acoustic radiation force (ARF). However, because most cells have similar acoustic properties, this capability is disconnected from cellular genetic programs. Here, we show that gas vesicles (GVs)—a unique class of gas-filled protein nanostructures—can serve as genetically encodable actuators for selective acoustic manipulation. Because of their lower density and higher compressibility relative to water, GVs experience strong ARF with opposite polarity to most other materials. When expressed inside cells, GVs invert the cells’ acoustic contrast and amplify the magnitude of their ARF, allowing the cells to be selectively manipulated with sound waves based on their genotype. GVs provide a direct link between gene expression and acoustomechanical actuation, opening a paradigm for selective cellular control in a broad range of contexts.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ultrasound-nanovesicles interplay for theranostics;Advanced Drug Delivery Reviews;2024-02

2. Ultrasound robotics for precision therapy;Advanced Drug Delivery Reviews;2024-02

3. Sonogenetics for Monitoring and Modulating Biomolecular Function by Ultrasound;Angewandte Chemie;2024-01-23

4. Sonogenetics for Monitoring and Modulating Biomolecular Function by Ultrasound;Angewandte Chemie International Edition;2024-01-23

5. Synthetic microbiology in sustainability applications;Nature Reviews Microbiology;2024-01-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3