Solar-driven abnormal evaporation of nanoconfined water

Author:

Xia Qiancheng1ORCID,Pan Yifan12ORCID,Liu Bin1,Zhang Xin3ORCID,Li Enze4,Shen Tao5,Li Shuang5ORCID,Xu Ning6ORCID,Ding Jie1ORCID,Wang Chao7ORCID,Vecitis Chad D.8ORCID,Gao Guandao19ORCID

Affiliation:

1. State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.

2. Laboratoire de Physique des Solides Bât. 510, Université Paris Saclay, 91405 Orsay, France.

3. College of Safety Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China.

4. Institute of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Efficient Utilization Technology of Coal Waste Resources, Shanxi University, Taiyuan 030006, China.

5. School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

6. College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China.

7. School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.

8. John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.

9. Chongqing Innovation Research Institute of Nanjing University, Chongqing 401121, China.

Abstract

Intrinsic water evaporation demands a high energy input, which limits the efficacy of conventional interfacial solar evaporators. Here, we propose a nanoconfinement strategy altering inherent properties of water for solar-driven water evaporation using a highly uniform composite of vertically aligned Janus carbon nanotubes (CNTs). The water evaporation from the CNT shows the unexpected diameter-dependent evaporation rate, increasing abnormally with decreasing nanochannel diameter. The evaporation rate of CNT 10 @AAO evaporator thermodynamically exceeds the theoretical limit (1.47 kg m −2 hour −1 under one sun). A hybrid experimental, theoretical, and molecular simulation approach provided fundamental evidence of different nanoconfined water properties. The decreased number of H-bonds and lower interaction energy barrier of water molecules within CNT and formed water clusters may be one of the reasons for the less evaporative energy activating rapid nanoconfined water vaporization.

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3