From Fluctuations to Phenotypes: The Physiology of Noise

Author:

Samoilov Michael S.1,Price Gavin2,Arkin Adam P.12

Affiliation:

1. Howard Hughes Medical Institute, Berkeley, CA 94720, USA.

2. Howard Hughes Medical Institute, Department of Bioengineering, University of California at Berkeley, Center for Synthetic Biology, Virtual Institute of Microbial Stress and Survival, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

Abstract

There are fundamental physical reasons why biochemical processes might be subject to noise and stochastic fluctuations. Indeed, it has long been understood that random molecular-scale mechanisms, such as those that drive genetic mutation, lie at the heart of population-scale evolutionary dynamics. What we can now appreciate is how stochastic fluctuations inherent in biochemical processes contribute to cellular and organismal phenotypes. Advancements in techniques for empirically measuring single cells and in corresponding theoretical methods have enabled the rigorous design and interpretation of experiments that provide incontrovertible proof that there are important endogenous sources of stochasticity that drive biological processes at the scale of individual organisms. Recently, some studies have progressed beyond merely ascertaining the presence of noise in biological systems; they trace its role in cellular physiology as it is passed through and processed by the biomolecular pathways—from the underlying origins of stochastic fluctuations in random biomolecular interactions to their ultimate manifestations in characteristic species phenotypes. These emerging results suggest new biological network design principles that account for a constructive role played by noise in defining the structure, function, and fitness of biological systems. They further show that stochastic mechanisms open novel classes of regulatory, signaling, and organizational choices that can serve as efficient and effective biological solutions to problems that are more complex, less robust, or otherwise suboptimal to deal with in the context of purely deterministic systems. Research in Drosophila melanogaster eye color-vision development and Bacillus subtilis competence induction has elegantly traced the role of noise in vital physiological processes from fluctuations to phenotypes, and is used here to highlight these developments.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3