STING licensing of type I dendritic cells potentiates antitumor immunity

Author:

Wang Jian12ORCID,Li Suxin1ORCID,Wang Maggie1ORCID,Wang Xu1,Chen Shuqing3,Sun Zhichen14ORCID,Ren Xiubao2ORCID,Huang Gang1ORCID,Sumer Baran D.3,Yan Nan5ORCID,Fu Yang-Xin4ORCID,Gao Jinming136ORCID

Affiliation:

1. Department of Pharmacology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

2. Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.

3. Department of Otolaryngology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

4. Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

5. Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

6. Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

Abstract

Stimulator of interferon genes (STING) is an immune adaptor protein that senses cyclic GMP-AMP in response to self or microbial cytosolic DNA as a danger signal. STING is ubiquitously expressed in diverse cell populations, including cancer cells, with distinct cellular functions, such as activation of type I interferons, autophagy induction, or triggering apoptosis. It is not well understood whether and which subsets of immune cells, stromal cells, or cancer cells are particularly important for STING-mediated antitumor immunity. Here, using a polymeric STING-activating nanoparticle (PolySTING) with a shock-and-lock dual activation mechanism, we show that conventional type 1 dendritic cells (cDC1s) are essential for STING-mediated rejection of multiple established and metastatic murine tumors. STING status in the host but not in the cancer cells ( Tmem173 −/− ) is important for antitumor efficacy. Specific depletion of cDC1 ( Batf3 −/− ) or STING deficiency in cDC1 ( XCR1 cre STING fl/fl ) abolished PolySTING efficacy, whereas depletion of other myeloid cells had little effect. Adoptive transfer of wild-type cDC1 in Batf3 −/− mice restored antitumor efficacy, whereas transfer of cDC1 with STING or IRF3 deficiency failed to rescue. PolySTING induced a specific chemokine signature in wild-type but not Batf3 −/− mice. Multiplexed immunohistochemistry analysis of STING-activating cDC1s in resected tumors correlates with patient survival. Furthermore, STING-cDC1 signature was increased after neoadjuvant pembrolizumab therapy in patients with non–small cell lung cancer. Therefore, we have defined that a subset of myeloid cells is essential for STING-mediated antitumor immunity with associated biomarkers for prognosis.

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3