A disease-associated mutation in thyroid hormone receptor α1 causes hearing loss and sensory hair cell patterning defects in mice

Author:

Affortit Corentin1ORCID,Blanc Fabian12ORCID,Nasr Jamal1,Ceccato Jean-Charles1ORCID,Markossian Suzy3ORCID,Guyot Romain3ORCID,Puel Jean-Luc1ORCID,Flamant Frédéric3ORCID,Wang Jing12ORCID

Affiliation:

1. Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, Montpellier, France.

2. Department of ENT and Head and Neck Surgery, University Hospital of Montpellier, Montpellier, France.

3. Institut de Génomique Fonctionnelle de Lyon (IGFL), INRAE USC1370, CNRS (UMR5242), ENS, Lyon, France.

Abstract

Resistance to thyroid hormone due to mutations in THRA , which encodes the thyroid hormone receptor α (TRα1), shows variable clinical presentation. Mutations affecting TRβ1 and TRβ2 cause deafness in mice and have been associated with deafness in humans. To test whether TRα1 also affects hearing function, we used mice heterozygous for a frameshift mutation in Thra that is similar to human THRA mutations ( Thra S1/ + mice) and reduces tissue sensitivity to thyroid hormone. Compared to wild-type littermates, Thra S1/+ mice showed moderate high-frequency sensorineural hearing loss as juveniles and increased age-related hearing loss. Ultrastructural examination revealed aberrant orientation of ~20% of sensory outer hair cells (OHCs), as well as increased numbers of mitochondria with fragmented morphology and autophagic vacuoles in both OHCs and auditory nerve fibers. Molecular dissection of the OHC lateral wall components revealed that the potassium ion channel Kcnq4 was aberrantly targeted to the cytoplasm of mutant OHCs. In addition, mutant cochleae showed increased oxidative stress, autophagy, and mitophagy associated with greater age-related cochlear cell damage, demonstrating that TRα1 is required for proper development of OHCs and for maintenance of OHC function. These findings suggest that patients with THRA mutations may present underdiagnosed, mild hearing loss and may be more susceptible to age-related hearing loss.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3