TRPM7 kinase activity induces amyloid-β degradation to reverse synaptic and cognitive deficits in mouse models of Alzheimer’s disease

Author:

Zhang Shimeng1ORCID,Cao Feifei1ORCID,Li Wei1,Abumaria Nashat1ORCID

Affiliation:

1. State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.

Abstract

Altered abundance or activity of the dual-function transient receptor potential melastatin-like 7 (TRPM7) protein is implicated in neurodegenerative disorders, including Alzheimer’s disease (AD). Toxic aggregation of amyloid-β (Aβ) in neurons is implicated in AD pathology. Here, we found that the kinase activity of TRPM7 is important to stimulate the degradation of Aβ. TRPM7 expression was decreased in hippocampal tissue samples from patients with AD and two mouse models of AD ( APP/PS1 and 5XFAD ). In cultures of hippocampal neurons from mice, overexpression of full-length TRPM7 or of its functional kinase domain M7CK prevented synapse loss induced by exogenous Aβ. In contrast, this neuroprotection was not afforded by overexpression of either the functional ion channel portion alone or a TRPM7 mutant lacking kinase activity. M7CK overexpression in the hippocampus of young and old 5XFAD mice prevented and reversed, respectively, memory deficits, synapse loss, and Aβ plaque accumulation. In both neurons and mice, M7CK interacted with and activated the metalloprotease MMP14 to promote Aβ degradation. Thus, TRPM7 loss in patients with AD may contribute to the associated Aβ pathology.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3