The type II TGF-β receptor phosphorylates Tyr 182 in the type I receptor to activate downstream Src signaling

Author:

Yakymovych Ihor1ORCID,Yakymovych Mariya1,Hamidi Anahita1ORCID,Landström Maréne2ORCID,Heldin Carl-Henrik1ORCID

Affiliation:

1. Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden.

2. Department of Medical Biosciences, Pathology Section, Umeå University, SE-901 87 Umeå, Sweden.

Abstract

Transforming growth factor–β (TGF-β) signaling has important roles during embryonic development and in tissue homeostasis. TGF-β ligands exert cellular effects by binding to type I (TβRI) and type II (TβRII) receptors and inducing both SMAD-dependent and SMAD-independent intracellular signaling pathways, the latter of which includes the activation of the tyrosine kinase Src. We investigated the mechanism by which TGF-β stimulation activates Src in human and mouse cells. Before TGF-β stimulation, inactive Src was complexed with TβRII. Upon TGF-β1 stimulation, TβRII associated with and phosphorylated TβRI at Tyr 182 . Binding of Src to TβRI involved the interaction of the Src SH2 domain with phosphorylated Tyr 182 and the interaction of the Src SH3 domain with a proline-rich region in TβRI and led to the activation of Src kinase activity and Src autophosphorylation. TGF-β1–induced Src activation required the kinase activities of TβRII and Src but not that of TβRI. Activated Src also phosphorylated TβRI on several tyrosine residues, which may stabilize the binding of Src to the receptor. Src activation was required for the ability of TGF-β to induce fibronectin production and migration in human breast carcinoma cells and to induce α–smooth muscle actin and actin reorganization in mouse fibroblasts. Thus, TGF-β induces Src activation by stimulating a direct interaction with TβRI that depends on tyrosine phosphorylation of TβRI by TβRII.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3