CD98hc promotes drug resistance in extranodal natural killer/T cell lymphoma through tumor cell–derived small extracellular vesicles

Author:

Liao Liming12ORCID,Yang Ping3ORCID,Zhang Weilong3ORCID,Yu Shuyu12,Jing Hongmei3ORCID,Zheng Xiaofeng12ORCID

Affiliation:

1. State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.

2. Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China.

3. Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing 100191, China.

Abstract

Extranodal natural killer/T cell lymphoma (ENKTL) shows a high rate of recurrence after chemoradiotherapy. Drug resistance can be mediated by the cargo of small extracellular vesicles (sEVs). Here, we show that high abundance of the transmembrane glycoprotein CD98hc in tumor cells and serum sEVs was associated with ENKTL progression and drug resistance. Mechanistically, PEGylated-asparaginase (PEG-asp) treatment, a common therapy against ENKTL, promoted the translocation of the transcription factor ATF4 to the nucleus, where it was stabilized by USP1 and subsequently increased CD98hc expression. CD98hc delivered in tumor cell–derived sEVs increased tumor cell proliferation and drug resistance in a cultured human NK lymphoma cell line, animal models, and samples from patients with refractory/relapse ENKTL. Moreover, inhibiting both USP1 and EV secretion synergistically enhanced the cytotoxicity of PEG-asp. These data suggest that targeting CD98hc in the treatment of ENKTL may be beneficial in overcoming drug resistance.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3