Affiliation:
1. Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, FE280, SE-171 77 Stockholm, Sweden.
Abstract
Successful cell division in pro- and eukaryotes is ensured by checkpoints that regulate cell cycle progression. Structural and biochemical analyses of the DNA integrity scanning protein (DisA) have recently shown that its domain of unknown function, DUF147 [renamed DAC (for diadenylate cyclase)], has diadenylate cyclase activity. This diadenylate cyclase activity is abolished when DisA binds to branched DNA substrates, which arise during DNA double-strand breaks that can spontaneously occur during DNA replication. This finding identifies cyclic di(3′→5′)-adenylic acid (c-di-AMP) as a second messenger candidate that signals DNA integrity in
Bacillus subtilis
during sporulation, a specialized cell division process that leads to formation of a dormant cell called a spore. The DAC domain is widespread in Bacteria and Archaea; moreover, it is found in proteins containing diverse domains, suggesting that c-di-AMP acts as a second messenger molecule in response to various signals besides branched DNA. To elucidate the biological importance and molecular mechanisms of action for c-di-AMP and the recently recognized second messenger c-di-GMP will require a multidisciplinary approach.
Publisher
American Association for the Advancement of Science (AAAS)
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
155 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献