The Bacillus cereus toxin alveolysin disrupts the intestinal epithelial barrier by inducing microtubule disorganization through CFAP100

Author:

Sun Shuang1ORCID,Xu Zhaoyang1,Hu Haijie1,Zheng Manxi1,Zhang Liang1,Xie Wei1ORCID,Sun Lei1ORCID,Liu Peiwei1ORCID,Li Tianliang1ORCID,Zhang Liangran1,Chen Min2ORCID,Zhu Xueliang3ORCID,Liu Min1ORCID,Yang Yunfan4ORCID,Zhou Jun15ORCID

Affiliation:

1. Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan 250014, China.

2. State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.

3. State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.

4. Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.

5. State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China.

Abstract

Bacillus cereus is a Gram-positive bacterium that mainly causes self-limiting emetic or diarrheal illness but can also cause skin infections and bacteremia. Symptoms of B. cereus ingestion depend on the production of various toxins that target the gastric and intestinal epithelia. From a screen of bacterial isolates from human stool samples that compromised intestinal barrier function in mice, we identified a strain of B. cereus that disrupted tight and adherens junctions in the intestinal epithelium. This activity was mediated by the pore-forming exotoxin alveolysin, which increased the production of the membrane-anchored protein CD59 and of cilia- and flagella-associated protein 100 (CFAP100) in intestinal epithelial cells. In vitro, CFAP100 interacted with microtubules and promoted microtubule polymerization. CFAP100 overexpression stabilized microtubules in intestinal epithelial cells, leading to disorganization of the microtubule network and perturbation of tight and adherens junctions. The disruption of cell junctions by alveolysin depended on the increase in CFAP100, which in turn depended on CD59 and the activation of PI3K-AKT signaling. These findings demonstrate that, in addition to forming membrane pores, B. cereus alveolysin can permeabilize the intestinal epithelium by disrupting epithelial cell junctions in a manner that is consistent with intestinal symptoms and may allow the bacteria to escape the intestine and cause systemic infections. Our results suggest the potential value of targeting alveolysin or CFAP100 to prevent B. cereus –associated intestinal diseases and systemic infections.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3