TNF-α signals through ITK-Akt-mTOR to drive CD4 + T cell metabolic reprogramming, which is dysregulated in rheumatoid arthritis

Author:

Bishop Emma L.1ORCID,Gudgeon Nancy1ORCID,Fulton-Ward Taylor12ORCID,Stavrou Victoria1,Roberts Jennie2ORCID,Boufersaoui Adam2,Tennant Daniel A.2ORCID,Hewison Martin2ORCID,Raza Karim34ORCID,Dimeloe Sarah12ORCID

Affiliation:

1. Institute of Immunology and Immunotherapy, University of Birmingham, B15 2TT Birmingham, UK.

2. Institute of Metabolism and Systems Research, University of Birmingham, B15 2TT Birmingham, UK.

3. Research into Inflammatory Arthritis Centre Versus Arthritis, Institute of Inflammation and Ageing, University of Birmingham, B15 2TT Birmingham, UK.

4. Sandwell and West Birmingham NHS Trust, B18 7QH Birmingham, UK.

Abstract

Upon activation, T cells undergo metabolic reprogramming to meet the bioenergetic demands of clonal expansion and effector function. Because dysregulated T cell cytokine production and metabolic phenotypes coexist in chronic inflammatory disease, including rheumatoid arthritis (RA), we investigated whether inflammatory cytokines released by differentiating T cells amplified their metabolic changes. We found that tumor necrosis factor–α (TNF-α) released by human naïve CD4 + T cells upon activation stimulated the expression of a metabolic transcriptome and increased glycolysis, amino acid uptake, mitochondrial oxidation of glutamine, and mitochondrial biogenesis. The effects of TNF-α were mediated by activation of Akt-mTOR signaling by the kinase ITK and did not require the NF-κB pathway. TNF-α stimulated the differentiation of naïve cells into proinflammatory T helper 1 (T H 1) and T H 17 cells, but not that of regulatory T cells. CD4 + T cells from patients with RA showed increased TNF-α production and consequent Akt phosphorylation upon activation. These cells also exhibited increased mitochondrial mass, particularly within proinflammatory T cell subsets implicated in disease. Together, these findings suggest that T cell–derived TNF-α drives their metabolic reprogramming by promoting signaling through ITK, Akt, and mTOR, which is dysregulated in autoinflammatory disease.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3