NLRP12 interacts with NLRP3 to block the activation of the human NLRP3 inflammasome

Author:

Coombs Jared R.1ORCID,Zamoshnikova Alina1ORCID,Holley Caroline L.1ORCID,Maddugoda Madhavi P.1ORCID,Teo Daniel Eng Thiam1ORCID,Chauvin Camille2ORCID,Poulin Lionel F3,Vitak Nazarii4,Ross Connie M.14ORCID,Mellacheruvu Manasa1ORCID,Coll Rebecca C.1,Heinz Leonhard X.1ORCID,Burgener Sabrina S.1ORCID,Emming Stefan1ORCID,Chamaillard Mathias2ORCID,Boucher Dave1ORCID,Schroder Kate1ORCID

Affiliation:

1. Institute for Molecular Bioscience, University of Queensland, St Lucia 4072, Australia.

2. U1019, Institut Pasteur de Lille, University of Lille, Centre National de la Recherche Scientifique, INSERM, Centre Hospitalo-Universitaire Lille, Lille 59019, France.

3. Laboratory of Cell Physiology, INSERM U1003, University of Lille, Lille 59000, France.

4. School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia 4072, Australia.

Abstract

Inflammasomes are multiprotein complexes that drive inflammation and contribute to protective immunity against pathogens and immune pathology in autoinflammatory diseases. Inflammasomes assemble when an inflammasome scaffold protein senses an activating signal and forms a signaling platform with the inflammasome adaptor protein ASC. The NLRP subfamily of NOD-like receptors (NLRs) includes inflammasome nucleators (such as NLRP3) and also NLRP12, which is genetically linked to familial autoinflammatory disorders that resemble diseases caused by gain-of-function NLRP3 mutants that generate a hyperactive NLRP3 inflammasome. We performed a screen to identify ASC inflammasome–nucleating proteins among NLRs that have the canonical pyrin-NACHT-LRR domain structure. Only NLRP3 and NLRP6 could initiate ASC polymerization to form “specks,” and NLRP12 failed to nucleate ASC polymerization. However, wild-type NLRP12 inhibited ASC inflammasome assembly induced by wild-type and gain-of-function mutant NLRP3, an effect not seen with disease-associated NLRP12 mutants. The capacity of NLRP12 to suppress NLRP3 inflammasome assembly was limited to human NLRP3 and was not observed for wild-type murine NLRP3. Furthermore, peripheral blood mononuclear cells from patients with an NLRP12 mutant–associated inflammatory disorder produced increased amounts of the inflammatory cytokine IL-1β in response to NLRP3 stimulation. Thus, our findings provide insights into NLRP12 biology and suggest that NLRP3 inhibitors in clinical trials for NLRP3-driven diseases may also be effective in treating NLRP12-associated autoinflammatory diseases.

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3