Affiliation:
1. Robert Wood Johnson Medical School, Department of Biochemistry, 675 Hoes Lane, Piscataway, NJ 08854, USA.
Abstract
Microorganisms that naturally encounter sharp temperature shifts must develop strategies for responding and adapting to these shifts.
Escherichia coli
, which are adapted to living at both warm temperatures inside animals and cooler ambient temperatures, respond to low temperatures (10° to 15°C) by adjusting membrane lipid composition and increasing the production of proteins that act as "RNA chaperones" required for transcription and translation and proteins that facilitate ribosomal assembly. In contrast, yeast, which are adapted to cooler temperatures, show a relatively minor cold shock response after temperature shifts from 30° to 10°C but respond with a dramatic increase in the synthesis of trehalose and a heat shock protein when exposed to freezing or near-freezing temperatures. This emphasizes the fact that different groups of microorganisms exhibit distinct types of cold shock responses.
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献