Visualizing the DNA repair process by a photolyase at atomic resolution

Author:

Maestre-Reyna Manuel12ORCID,Wang Po-Hsun1ORCID,Nango Eriko34ORCID,Hosokawa Yuhei125ORCID,Saft Martin6ORCID,Furrer Antonia7ORCID,Yang Cheng-Han1ORCID,Gusti Ngurah Putu Eka Putra1ORCID,Wu Wen-Jin1ORCID,Emmerich Hans-Joachim6ORCID,Caramello Nicolas89ORCID,Franz-Badur Sophie6ORCID,Yang Chao10ORCID,Engilberge Sylvain811ORCID,Wranik Maximilian7ORCID,Glover Hannah Louise7ORCID,Weinert Tobias7ORCID,Wu Hsiang-Yi1ORCID,Lee Cheng-Chung1ORCID,Huang Wei-Cheng1ORCID,Huang Kai-Fa1ORCID,Chang Yao-Kai1ORCID,Liao Jiahn-Haur1ORCID,Weng Jui-Hung1ORCID,Gad Wael1ORCID,Chang Chiung-Wen1,Pang Allan H.1ORCID,Yang Kai-Chun2,Lin Wei-Ting2ORCID,Chang Yu-Chen2ORCID,Gashi Dardan7,Beale Emma7ORCID,Ozerov Dmitry7ORCID,Nass Karol7ORCID,Knopp Gregor7ORCID,Johnson Philip J. M.7ORCID,Cirelli Claudio7ORCID,Milne Chris7ORCID,Bacellar Camila7ORCID,Sugahara Michihiro3,Owada Shigeki312ORCID,Joti Yasumasa312ORCID,Yamashita Ayumi313ORCID,Tanaka Rie313ORCID,Tanaka Tomoyuki313,Luo Fangjia12ORCID,Tono Kensuke312ORCID,Zarzycka Wiktoria14,Müller Pavel14ORCID,Alahmad Maisa Alkheder6ORCID,Bezold Filipp6ORCID,Fuchs Valerie6ORCID,Gnau Petra6,Kiontke Stephan6ORCID,Korf Lukas6ORCID,Reithofer Viktoria6ORCID,Rosner Christian Joshua6,Seiler Elisa Marie6ORCID,Watad Mohamed6,Werel Laura6,Spadaccini Roberta615ORCID,Yamamoto Junpei5ORCID,Iwata So313ORCID,Zhong Dongping101617ORCID,Standfuss Jörg7ORCID,Royant Antoine811ORCID,Bessho Yoshitaka13ORCID,Essen Lars-Oliver6ORCID,Tsai Ming-Daw118ORCID

Affiliation:

1. Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan.

2. Department of Chemistry, National Taiwan University, 1, Roosevelt Rd. Sec. 4, Taipei 106, Taiwan.

3. RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan.

4. Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.

5. Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.

6. Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany.

7. Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland.

8. European Synchrotron Radiation Facility, 38043 Grenoble, France.

9. Hamburg Centre for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany.

10. Department of Physics, The Ohio State University, Columbus, OH 43210, USA.

11. Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38044 Grenoble, France.

12. Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan.

13. Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.

14. Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.

15. Dipartimento di Scienze e tecnologie, Universita degli studi del Sannio, Benevento, Italy.

16. Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.

17. Center for Ultrafast Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China.

18. Institute of Biochemical Sciences, National Taiwan University, 1, Roosevelt Rd. Sec. 4, Taipei 106, Taiwan.

Abstract

Photolyases, a ubiquitous class of flavoproteins, use blue light to repair DNA photolesions. In this work, we determined the structural mechanism of the photolyase-catalyzed repair of a cyclobutane pyrimidine dimer (CPD) lesion using time-resolved serial femtosecond crystallography (TR-SFX). We obtained 18 snapshots that show time-dependent changes in four reaction loci. We used these results to create a movie that depicts the repair of CPD lesions in the picosecond-to-nanosecond range, followed by the recovery of the enzymatic moieties involved in catalysis, completing the formation of the fully reduced enzyme-product complex at 500 nanoseconds. Finally, back-flip intermediates of the thymine bases to reanneal the DNA were captured at 25 to 200 microseconds. Our data cover the complete molecular mechanism of a photolyase and, importantly, its chemistry and enzymatic catalysis at work across a wide timescale and at atomic resolution.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3