Visualizing Eigen/Zundel cations and their interconversion in monolayer water on metal surfaces

Author:

Tian Ye1ORCID,Hong Jiani1ORCID,Cao Duanyun23ORCID,You Sifan4ORCID,Song Yizhi1,Cheng Bowei1ORCID,Wang Zhichang1ORCID,Guan Dong1ORCID,Liu Xinmeng1ORCID,Zhao Zhengpu1ORCID,Li Xin-Zheng5678ORCID,Xu Li-Mei168ORCID,Guo Jing9ORCID,Chen Ji58ORCID,Wang En-Ge16810ORCID,Jiang Ying16811ORCID

Affiliation:

1. International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.

2. Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.

3. Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China.

4. Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.

5. School of Physics, Peking University, Beijing 100871, China.

6. Collaborative Innovation Center of Quantum Matter, Beijing 100871, China.

7. State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China.

8. Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China.

9. College of Chemistry, Beijing Normal University, Beijing 100875, China.

10. Songshan Lake Materials Lab, Institute of Physics, CAS and School of Physics, Liaoning University, Shenyang 110036, China.

11. CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China.

Abstract

The nature of hydrated proton on solid surfaces is of vital importance in electrochemistry, proton channels, and hydrogen fuel cells but remains unclear because of the lack of atomic-scale characterization. We directly visualized Eigen- and Zundel-type hydrated protons within the hydrogen bonding water network on Au(111) and Pt(111) surfaces, using cryogenic qPlus-based atomic force microscopy under ultrahigh vacuum. We found that the Eigen cations self-assembled into monolayer structures with local order, and the Zundel cations formed long-range ordered structures stabilized by nuclear quantum effects. Two Eigen cations could combine into one Zundel cation accompanied with a simultaneous proton transfer to the surface. Moreover, we revealed that the Zundel configuration was preferred over the Eigen on Pt(111), and such a preference was absent on Au(111).

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3