Edge learning using a fully integrated neuro-inspired memristor chip

Author:

Zhang Wenbin1ORCID,Yao Peng1ORCID,Gao Bin1ORCID,Liu Qi1ORCID,Wu Dong1,Zhang Qingtian1ORCID,Li Yuankun1,Qin Qi1ORCID,Li Jiaming1,Zhu Zhenhua2ORCID,Cai Yi2,Wu Dabin1ORCID,Tang Jianshi1ORCID,Qian He1,Wang Yu2,Wu Huaqiang1ORCID

Affiliation:

1. School of Integrated Circuits, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China.

2. Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China.

Abstract

Learning is highly important for edge intelligence devices to adapt to different application scenes and owners. Current technologies for training neural networks require moving massive amounts of data between computing and memory units, which hinders the implementation of learning on edge devices. We developed a fully integrated memristor chip with the improvement learning ability and low energy cost. The schemes in the STELLAR architecture, including its learning algorithm, hardware realization, and parallel conductance tuning scheme, are general approaches that facilitate on-chip learning by using a memristor crossbar array, regardless of the type of memristor device. Tasks executed in this study included motion control, image classification, and speech recognition.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference53 articles.

1. Edge Computing: Vision and Challenges

2. Learning representations by back-propagating errors

3. Deep learning

4. A. Coates B. Huval T. Wang D. J. Wu A. Y. Ng B. Catanzaro “Deep learning with COTS HPC systems” in Proceedings of the 30th International Conference on Machine Learning (PMLR 2013) pp. 1337–1345.

5. M. Horowitz “1.1 Computing’s energy problem (and what we can do about it)” in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE 2014) pp. 10–14.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3