ATM Engages Autodegradation of the E3 Ubiquitin Ligase COP1 After DNA Damage

Author:

Dornan David12,Shimizu Harumi12,Mah Angie12,Dudhela Tanay12,Eby Michael12,O'Rourke Karen12,Seshagiri Somasekar12,Dixit Vishva M.12

Affiliation:

1. Department of Physiological Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.

2. Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.

Abstract

The ataxia telangiectasia mutated (ATM) protein kinase is a critical component of a DNA-damage response network configured to maintain genomic integrity. The abundance of an essential downstream effecter of this pathway, the tumor suppressor protein p53, is tightly regulated by controlled degradation through COP1 and other E3 ubiquitin ligases, such as MDM2 and Pirh2; however, the signal transduction pathway that regulates the COP1-p53 axis following DNA damage remains enigmatic. We observed that in response to DNA damage, ATM phosphorylated COP1 on Ser 387 and stimulated a rapid autodegradation mechanism. Ionizing radiation triggered an ATM-dependent movement of COP1 from the nucleus to the cytoplasm, and ATM-dependent phosphorylation of COP1 on Ser 387 was both necessary and sufficient to disrupt the COP1-p53 complex and subsequently to abrogate the ubiquitination and degradation of p53. Furthermore, phosphorylation of COP1 on Ser 387 was required to permit p53 to become stabilized and to exert its tumor suppressor properties in response to DNA damage.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3