Quantum-critical conductivity of the Dirac fluid in graphene

Author:

Gallagher Patrick12ORCID,Yang Chan-Shan13ORCID,Lyu Tairu1ORCID,Tian Fanglin14,Kou Rai1ORCID,Zhang Hai15ORCID,Watanabe Kenji6ORCID,Taniguchi Takashi6,Wang Feng127ORCID

Affiliation:

1. Department of Physics, University of California, Berkeley, CA 94720, USA.

2. Kavli Energy NanoScience Institute, University of California, and Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

3. Institute of Electro-Optical Science and Technology, National Taiwan Normal University, Taipei 11677, Taiwan.

4. School of Physics, Nankai University, Tianjin 300071, China.

5. School of Information Engineering, Nanchang Institute of Technology, Nanchang 330099, China.

6. National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan.

7. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

Abstract

Electron hydrodynamics in graphene Electrons can move through graphene in a manner reminiscent of fluids, if the conditions are right. Two groups studied the nature of this hydrodynamic flow in different regimes (see the Perspective by Lucas). Gallagher et al. measured optical conductivity using a waveguide-based setup, revealing signatures of quantum criticality near the charge neutrality point. Berdyugin et al. focused on electron transport in the presence of a magnetic field and measured a counterintuitive contribution to the Hall response that stems from hydrodynamic flow. Science , this issue p. 158 , p. 162 ; see also p. 125

Funder

Office of Naval Research

Basic Energy Sciences

Japan Society for the Promotion of Science

Ministry of Education, Culture, Sports, Science, and Technology

Japan Science and Technology Agency

Ministry of Science and Technology, Taiwan

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3