Inverse design of a pyrochlore lattice of DNA origami through model-driven experiments

Author:

Liu Hao1ORCID,Matthies Michael1ORCID,Russo John2ORCID,Rovigatti Lorenzo2ORCID,Narayanan Raghu Pradeep13ORCID,Diep Thong1,McKeen Daniel4ORCID,Gang Oleg456ORCID,Stephanopoulos Nicholas1ORCID,Sciortino Francesco2ORCID,Yan Hao1ORCID,Romano Flavio78,Šulc Petr19ORCID

Affiliation:

1. School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85281, USA.

2. Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy.

3. Department of Cellular and Molecular Pharmacology, University of California–San Francisco, San Francisco, CA 94143, USA.

4. Department of Chemical Engineering, Columbia University, 817 SW Mudd, New York, NY 10027, USA.

5. Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA.

6. Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA.

7. Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30171 Venezia-Mestre, Italy.

8. European Centre for Living Technology (ECLT), Ca’ Bottacin, 3911 Dorsoduro Calle Crosera, 30123 Venice, Italy.

9. School of Natural Sciences, Department of Bioscience, Technical University Munich, 85748 Garching, Germany.

Abstract

Sophisticated statistical mechanics approaches and human intuition have demonstrated the possibility of self-assembling complex lattices or finite-size constructs. However, attempts so far have mostly only been successful in silico and often fail in experiment because of unpredicted traps associated with kinetic slowing down (gelation, glass transition) and competing ordered structures. Theoretical predictions also face the difficulty of encoding the desired interparticle interaction potential with the experimentally available nano- and micrometer-sized particles. To overcome these issues, we combine SAT assembly (a patchy-particle interaction design algorithm based on constrained optimization) with coarse-grained simulations of DNA nanotechnology to experimentally realize trap-free self-assembly pathways. We use this approach to assemble a pyrochlore three-dimensional lattice, coveted for its promise in the construction of optical metamaterials, and characterize it with small-angle x-ray scattering and scanning electron microscopy visualization.

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3