Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers

Author:

Bella Federico1,Griffini Gianmarco2,Correa-Baena Juan-Pablo3,Saracco Guido4,Grätzel Michael5,Hagfeldt Anders3,Turri Stefano2,Gerbaldi Claudio1

Affiliation:

1. Group for Applied Materials and Electrochemistry (GAME Lab), CHENERGY Group, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy.

2. Department of Chemistry, Materials and Chemical Engineering “Giulio Natta,” Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy.

3. Laboratory of Photomolecular Science, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Chemin des Alambics, Station 3, 1015, Lausanne, Switzerland.

4. Center for Sustainable Futures @PoliTO, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Torino, Italy.

5. Laboratory of Photonics and Interfaces, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 3, 1015, Lausanne, Switzerland.

Abstract

Improving the stability of perovskite solar cells Inorganic-organic perovskite solar cells have poor long-term stability because ultraviolet light and humidity degrade these materials. Bella et al. show that coating the cells with a water-proof fluorinated polymer that contains pigments to absorb ultraviolet light and re-emit it in the visible range can boost cell efficiency and limit photodegradation. The performance and stability of inorganic-organic perovskite solar cells are also limited by the size of the cations required for forming a correct lattice. Saliba et al. show that the rubidium cation, which is too small to form a perovskite by itself, can form a lattice with cesium and organic cations. Solar cells based on these materials have efficiencies exceeding 20% for over 500 hours if given environmental protection by a polymer coating. Science , this issue pp. 203 and 206

Funder

Swiss National Science Foundation

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3