Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys at 20 kelvin

Author:

Liu Dong1ORCID,Yu Qin2ORCID,Kabra Saurabh3ORCID,Jiang Ming1ORCID,Forna-Kreutzer Paul1ORCID,Zhang Ruopeng45ORCID,Payne Madelyn45ORCID,Walsh Flynn24ORCID,Gludovatz Bernd6ORCID,Asta Mark24ORCID,Minor Andrew M.45ORCID,George Easo P.789,Ritchie Robert O.24ORCID

Affiliation:

1. School of Physics, University of Bristol, Bristol BS8 1TL, UK.

2. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

3. ENGIN-X, ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, Oxon OX11 0QX, UK.

4. Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA.

5. National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

6. School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.

7. Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.

8. Materials Science and Engineering Department, University of Tennessee, Knoxville, TN 37996, USA.

9. Institute for Materials, Ruhr University Bochum, 44801 Bochum, Germany.

Abstract

CrCoNi-based medium- and high-entropy alloys display outstanding damage tolerance, especially at cryogenic temperatures. In this study, we examined the fracture toughness values of the equiatomic CrCoNi and CrMnFeCoNi alloys at 20 kelvin (K). We found exceptionally high crack-initiation fracture toughnesses of 262 and 459 megapascal-meters ½ (MPa·m ½ ) for CrMnFeCoNi and CrCoNi, respectively; CrCoNi displayed a crack-growth toughness exceeding 540 MPa·m ½ after 2.25 millimeters of stable cracking. Crack-tip deformation structures at 20 K are quite distinct from those at higher temperatures. They involve nucleation and restricted growth of stacking faults, fine nanotwins, and transformed epsilon martensite, with coherent interfaces that can promote both arrest and transmission of dislocations to generate strength and ductility. We believe that these alloys develop fracture resistance through a progressive synergy of deformation mechanisms, dislocation glide, stacking-fault formation, nanotwinning, and phase transformation, which act in concert to prolong strain hardening that simultaneously elevates strength and ductility, leading to exceptional toughness.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3