Disordered proteins follow diverse transition paths as they fold and bind to a partner

Author:

Kim Jae-Yeol1ORCID,Chung Hoi Sung1ORCID

Affiliation:

1. Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.

Abstract

Shedding light on disordered proteins Disordered proteins often fold as they bind to a partner protein. There could be many different molecular trajectories between the unbound proteins and the bound complex. Most methods to measure transition paths rely on monitoring a single distance, making it difficult to resolve complex pathways. Kim and Chung used fast three-color single-molecule Foster resonance energy transfer (FRET) to simultaneously probe distance changes between the two ends of an unfolded protein and between each end and a probe on the partner protein. They show that binding can be initiated by diverse conformations and that the molecules are held together by non-native interactions as the disordered protein folds. This allows the association to be diffusion limited because most collisions lead to binding. Science , this issue p. 1253

Funder

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3