Coherent Control of Retinal Isomerization in Bacteriorhodopsin

Author:

Prokhorenko Valentyn I.123,Nagy Andrea M.123,Waschuk Stephen A.123,Brown Leonid S.123,Birge Robert R.123,Miller R. J. Dwayne123

Affiliation:

1. Institute for Optical Sciences, Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, M5S3H6, Toronto, Ontario, Canada.

2. Department of Physics, University of Guelph, N1G2W1, Guelph, Ontario, Canada.

3. Department of Chemistry, University of Connecticut, Storrs, CT, USA.

Abstract

Optical control of the primary step of photoisomerization of the retinal molecule in bacteriorhodopsin from the all-trans to the 13-cis state was demonstrated under weak field conditions (where only 1 of 300 retinal molecules absorbs a photon during the excitation cycle) that are relevant to understanding biological processes. By modulating the phases and amplitudes of the spectral components in the photoexcitation pulse, we showed that the absolute quantity of 13-cis retinal formed upon excitation can be enhanced or suppressed by ±20% of the yield observed using a short transform-limited pulse having the same actinic energy. The shaped pulses were shown to be phase-sensitive at intensities too low to access different higher electronic states, and so these pulses apparently steer the isomerization through constructive and destructive interference effects, a mechanism supported by observed signatures of vibrational coherence. These results show that the wave properties of matter can be observed and even manipulated in a system as large and complex as a protein.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 344 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3