Experimental characterization of fragile topology in an acoustic metamaterial

Author:

Peri Valerio1ORCID,Song Zhi-Da2ORCID,Serra-Garcia Marc1ORCID,Engeler Pascal1,Queiroz Raquel3ORCID,Huang Xueqin4,Deng Weiyin4,Liu Zhengyou56ORCID,Bernevig B. Andrei278ORCID,Huber Sebastian D.1ORCID

Affiliation:

1. Institute for Theoretical Physics, ETH Zurich, 8093 Zürich, Switzerland.

2. Department of Physics, Princeton University, Princeton, NJ 08544, USA.

3. Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel.

4. School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong 510640, China.

5. Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China.

6. Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.

7. Physics Department, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.

8. Max Planck Institute of Microstructure Physics, 06120 Halle, Germany.

Abstract

Understanding fragile topology Exploiting topological features in materials is being pursued as a route to build in robustness of particular properties. Stemming from crystalline symmetries, such topological protection renders the properties robust against defects and provides a platform of rich physics to be studied. Recent developments have revealed the existence of so-called fragile topological phases, where the means of classification due to symmetry is unclear. Z.-D. Song et al. and Peri et al. present a combined theoretical and experimental approach to identify, classify, and measure the properties of fragile topological phases. By invoking twisted boundary conditions, they are able to describe the properties of fragile topological states and verify the expected experimental signature in an acoustic crystal. Understanding how fragile topology arises could be used to develop new materials with exotic properties. Science , this issue p. 794 , p. 797

Funder

European Research Council

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3