Ice-confined synthesis of highly ionized 3D-quasilayered polyamide nanofiltration membranes

Author:

Zhang Yanqiu12ORCID,Wang Hao1ORCID,Guo Jing1,Cheng Xiquan3ORCID,Han Gang4ORCID,Lau Cher Hon5,Lin Haiqing6ORCID,Liu Shaomin7ORCID,Ma Jun2ORCID,Shao Lu1ORCID

Affiliation:

1. MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.

2. School of Environment, Harbin Institute of Technology, Harbin 150009, China.

3. School of Marine Science and Technology, Sino-European Membrane Technology Research Institute, Harbin Institute of Technology, Weihai 264209, China.

4. College of Environmental Science and Engineering, Nankai University, Jinnan District, Tianjin 300350, China.

5. School of Engineering, The University of Edinburgh, Edinburgh EH9 3JL, UK.

6. Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.

7. WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University Perth, Perth, Western Australia.

Abstract

Existing polyamide (PA) membrane synthesis protocols are underpinned by controlling diffusion-dominant liquid-phase reactions that yield subpar spatial architectures and ionization behavior. We report an ice-confined interfacial polymerization strategy to enable the effective kinetic control of the interfacial reaction and thermodynamic manipulation of the hexagonal polytype ( I h ) ice phase containing monomers to rationally synthesize a three-dimensional quasilayered PA membrane for nanofiltration. Experiments and molecular simulations confirmed the underlying membrane formation mechanism. Our ice-confined PA nanofiltration membrane features high-density ionized structure and exceptional transport channels, realizing superior water permeance and excellent ion selectivity.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3