Correlating the charge-transfer gap to the maximum transition temperature in Bi 2 Sr 2 Ca n -1 Cu n O 2 n +4+δ

Author:

Wang Zechao12ORCID,Zou Changwei3,Lin Chengtian4,Luo Xiangyu5,Yan Hongtao5,Yin Chaohui5ORCID,Xu Yong367ORCID,Zhou Xingjiang5ORCID,Wang Yayu36ORCID,Zhu Jing12ORCID

Affiliation:

1. National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Key Laboratory of Advanced Materials (MOE), The State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing, P.R. China.

2. Ji Hua Laboratory, Foshan, Guangdong, P.R. China.

3. State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, P.R. China.

4. Max Planck Institute for Solid State Research, Stuttgart, Germany.

5. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, P.R. China.

6. New Cornerstone Science Laboratory, Frontier Science Center for Quantum Information, Beijing, P.R. China.

7. RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan.

Abstract

As the number of CuO 2 layers, n , in each unit cell of a cuprate family increases, the maximum transition temperature ( T c,max ) exhibits a universal bell-shaped curve with a peak at n = 3. The microscopic mechanism of this trend remains elusive. In this study, we used advanced electron microscopy to image the atomic structure of cuprates in the Bi 2 Sr 2 Ca n -1 Cu n O 2 n +4+δ family with 1 ≤ n ≤ 9; the evolution of the charge-transfer gap size (Δ) with n can be measured simultaneously. We determined that the n dependence of Δ follows an inverted bell-shaped curve with the minimum Δ value at n = 3. The correlation between Δ, n , and T c,max may clarify the origin of superconductivity in cuprates.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3