Low voltage–driven high-performance thermal switching in antiferroelectric PbZrO 3 thin films

Author:

Liu Chenhan1ORCID,Si Yangyang2ORCID,Zhang Hua3ORCID,Wu Chao3,Deng Shiqing4ORCID,Dong Yongqi5ORCID,Li Yijie2ORCID,Zhuo Meng1,Fan Ningbo6ORCID,Xu Bin6ORCID,Lu Ping1ORCID,Zhang Lifa7ORCID,Lin Xi2ORCID,Liu Xingjun2,Yang Juekuan3ORCID,Luo Zhenlin5ORCID,Das Sujit8ORCID,Bellaiche Laurent9ORCID,Chen Yunfei3ORCID,Chen Zuhuang210ORCID

Affiliation:

1. Micro- and Nano-scale Thermal Measurement and Thermal Management Laboratory, Jiangsu Key Laboratory for Numerical Simulation of Large-Scale Complex Systems, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China.

2. School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Guangdong 518055, P. R. China.

3. Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, P. R. China.

4. Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.

5. National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.

6. Institute of Theoretical and Applied Physics, Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, P. R. China.

7. Phonon Engineering Research Center, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, P. R. China.

8. Material Research Centre, Indian Institute of Science, Bangalore 560012, India.

9. Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR 72701, USA.

10. Flexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen, Guangdong 518055, P.R. China.

Abstract

Effective control of heat transfer is vital for energy saving and carbon emission reduction. In contrast to achievements in electrical conduction, active control of heat transfer is much more challenging. Ferroelectrics are promising candidates for thermal switching as a result of their tunable domain structures. However, switching ratios in ferroelectrics are low (<1.2). We report that high-quality antiferroelectric PbZrO 3 epitaxial thin films exhibit high-contrast (>2.2), fast-speed (<150 nanoseconds), and long-lifetime (>10 7 ) thermal switching under a small voltage (<10 V). In situ reciprocal space mapping and atomistic modelings reveal that the field-driven antiferroelectric-ferroelectric phase transition induces a substantial change of primitive cell size, which modulates phonon-phonon scattering phase space drastically and results in high switching ratio. These results advance the concept of thermal transport control in ferroic materials.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3