Kink bands promote exceptional fracture resistance in a NbTaTiHf refractory medium-entropy alloy

Author:

Cook David H.12ORCID,Kumar Punit2ORCID,Payne Madelyn I.12ORCID,Belcher Calvin H.3ORCID,Borges Pedro12ORCID,Wang Wenqing12,Walsh Flynn12ORCID,Li Zehao4ORCID,Devaraj Arun4ORCID,Zhang Mingwei25ORCID,Asta Mark12ORCID,Minor Andrew M.125ORCID,Lavernia Enrique J.3ORCID,Apelian Diran3ORCID,Ritchie Robert O.12ORCID

Affiliation:

1. Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.

2. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

3. Department of Materials Science and Engineering, University of California, Irvine, CA, USA.

4. Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.

5. National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

Abstract

Single-phase body-centered cubic (bcc) refractory medium- or high-entropy alloys can retain compressive strength at elevated temperatures but suffer from extremely low tensile ductility and fracture toughness. We examined the strength and fracture toughness of a bcc refractory alloy, NbTaTiHf, from 77 to 1473 kelvin. This alloy’s behavior differed from that of comparable systems by having fracture toughness over 253 MPa·m 1/2 , which we attribute to a dynamic competition between screw and edge dislocations in controlling the plasticity at a crack tip. Whereas the glide and intersection of screw and mixed dislocations promotes strain hardening controlling uniform deformation, the coordinated slip of <111> edge dislocations with {110} and {112} glide planes prolongs nonuniform strain through formation of kink bands. These bands suppress strain hardening by reorienting microscale bands of the crystal along directions of higher resolved shear stress and continually nucleate to accommodate localized strain and distribute damage away from a crack tip.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3