Bad metallic transport in a cold atom Fermi-Hubbard system

Author:

Brown Peter T.1ORCID,Mitra Debayan1ORCID,Guardado-Sanchez Elmer1ORCID,Nourafkan Reza2,Reymbaut Alexis2,Hébert Charles-David2ORCID,Bergeron Simon2ORCID,Tremblay A.-M. S.23ORCID,Kokalj Jure45,Huse David A.1ORCID,Schauß Peter1ORCID,Bakr Waseem S.1ORCID

Affiliation:

1. Department of Physics, Princeton University, Princeton, NJ 08544, USA.

2. Département de Physique, Institut Quantique, and Regroupement Québécois sur les Matériaux de Pointe, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada.

3. Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada.

4. Faculty of Civil and Geodetic Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia.

5. Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.

Abstract

Simulating transport with cold atoms Much can be learned about the nature of a solid from how charge and spin propagate through it. Transport experiments can also be performed in quantum simulators such as cold atom systems, in which individual atoms can be imaged using quantum microscopes. Now, two groups have investigated transport in the so-called Fermi-Hubbard model using a two-dimensional optical lattice filled with one fermionic atom per site (see the Perspective by Brantut). Moving away from half-filling to enable charge transport, Brown et al. found that the resistivity had a linear temperature dependence, not unlike that seen in the strange metal phase of cuprate superconductors. In a complementary study on spin transport, Nichols et al. observed spin diffusion driven by superexchange coupling. Science , this issue p. 379 , p. 383 ; see also p. 344

Funder

National Science Foundation

U.S. Department of Defense

David and Lucile Packard Foundation

Air Force Office of Scientific Research

Alfred P. Sloan Foundation

Natural Sciences and Engineering Research Council of Canada

Canada First Research Excellence Fund

Research Chair in the Theory of Quantum Materials

Slovenian Research Agency

Fonds de recherche du Québec – Nature et technologies

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3