Quantum metasurface for multiphoton interference and state reconstruction

Author:

Wang Kai1ORCID,Titchener James G.12ORCID,Kruk Sergey S.1ORCID,Xu Lei13ORCID,Chung Hung-Pin14ORCID,Parry Matthew1ORCID,Kravchenko Ivan I.5ORCID,Chen Yen-Hung46ORCID,Solntsev Alexander S.17ORCID,Kivshar Yuri S.1ORCID,Neshev Dragomir N.1ORCID,Sukhorukov Andrey A.1ORCID

Affiliation:

1. Nonlinear Physics Centre, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601, Australia.

2. Quantum Technology Enterprise Centre, Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8 1FD, UK.

3. School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2600, Australia.

4. Department of Optics and Photonics, National Central University, Jhongli 320, Taiwan.

5. Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.

6. Center for Astronautical Physics and Engineering, National Central University, Jhongli 320, Taiwan.

7. School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia.

Abstract

Going quantum with metamaterials Metasurfaces should allow wafer-thin surfaces to replace bulk optical components. Two reports now demonstrate that metasurfaces can be extended into the quantum optical regime. Wang et al. determined the quantum state of multiple photons by simply passing them through a dielectric metasurface, scattering them into single-photon detectors. Stav et al. used a dielectric metasurface to generate entanglement between spin and orbital angular momentum of single photons. The results should aid the development of integrated quantum optic circuits operating on a nanophotonic platform. Science , this issue p. 1104 , p. 1101

Funder

Australian Research Council

Ministry of Science and Technology, Taiwan

Department of Energy, Basic Energy Sciences, Scientific User Facilities Division

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 222 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3