Top-down design of protein architectures with reinforcement learning

Author:

Lutz Isaac D.123ORCID,Wang Shunzhi12ORCID,Norn Christoffer124ORCID,Courbet Alexis125ORCID,Borst Andrew J.12ORCID,Zhao Yan Ting167ORCID,Dosey Annie12ORCID,Cao Longxing128,Xu Jinwei12,Leaf Elizabeth M.12ORCID,Treichel Catherine12ORCID,Litvicov Patrisia16ORCID,Li Zhe12ORCID,Goodson Alexander D.12ORCID,Rivera-Sánchez Paula4ORCID,Bratovianu Ana-Maria4ORCID,Baek Minkyung129ORCID,King Neil P.12ORCID,Ruohola-Baker Hannele1367ORCID,Baker David123ORCID

Affiliation:

1. Department of Biochemistry, University of Washington, Seattle, WA, USA.

2. Institute for Protein Design, University of Washington, Seattle, WA, USA.

3. Department of Bioengineering, University of Washington, Seattle, WA, USA.

4. BioInnovation Institute, DK2200 Copenhagen N, Denmark.

5. Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.

6. Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.

7. Oral Health Sciences, University of Washington, Seattle, WA, USA.

8. Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.

9. School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.

Abstract

As a result of evolutionary selection, the subunits of naturally occurring protein assemblies often fit together with substantial shape complementarity to generate architectures optimal for function in a manner not achievable by current design approaches. We describe a “top-down” reinforcement learning–based design approach that solves this problem using Monte Carlo tree search to sample protein conformers in the context of an overall architecture and specified functional constraints. Cryo–electron microscopy structures of the designed disk-shaped nanopores and ultracompact icosahedra are very close to the computational models. The icosohedra enable very-high-density display of immunogens and signaling molecules, which potentiates vaccine response and angiogenesis induction. Our approach enables the top-down design of complex protein nanomaterials with desired system properties and demonstrates the power of reinforcement learning in protein design.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3