Live-cell micromanipulation of a genomic locus reveals interphase chromatin mechanics

Author:

Keizer Veer I. P.123ORCID,Grosse-Holz Simon124ORCID,Woringer Maxime12ORCID,Zambon Laura123ORCID,Aizel Koceila2,Bongaerts Maud2ORCID,Delille Fanny5ORCID,Kolar-Znika Lorena12ORCID,Scolari Vittore F.12ORCID,Hoffmann Sebastian3,Banigan Edward J.4ORCID,Mirny Leonid A.14ORCID,Dahan Maxime2,Fachinetti Daniele3ORCID,Coulon Antoine12ORCID

Affiliation:

1. Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664, Laboratoire Dynamique du Noyau, 75005 Paris, France.

2. Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005 Paris, France.

3. Institut Curie, PSL Research University, CNRS UMR144, Laboratoire Biologie Cellulaire et Cancer, 75005 Paris, France.

4. Department of Physics and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

5. ESPCI Paris, PSL Research University, Sorbonne Université, CNRS UMR8213, Laboratoire de Physique et d’Étude des Matériaux, 75005 Paris, France.

Abstract

Our understanding of the physical principles organizing the genome in the nucleus is limited by the lack of tools to directly exert and measure forces on interphase chromosomes in vivo and probe their material nature. Here, we introduce an approach to actively manipulate a genomic locus using controlled magnetic forces inside the nucleus of a living human cell. We observed viscoelastic displacements over micrometers within minutes in response to near-piconewton forces, which are consistent with a Rouse polymer model. Our results highlight the fluidity of chromatin, with a moderate contribution of the surrounding material, revealing minor roles for cross-links and topological effects and challenging the view that interphase chromatin is a gel-like material. Our technology opens avenues for future research in areas from chromosome mechanics to genome functions.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3