OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence

Author:

Sun Y.1ORCID,Frankenberg C.12ORCID,Wood J. D.3ORCID,Schimel D. S.1,Jung M.4,Guanter L.5ORCID,Drewry D. T.16ORCID,Verma M.7ORCID,Porcar-Castell A.8ORCID,Griffis T. J.9ORCID,Gu L.10ORCID,Magney T. S.1ORCID,Köhler P.2ORCID,Evans B.11ORCID,Yuen K.1ORCID

Affiliation:

1. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.

2. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.

3. School of Natural Resources, University of Missouri, Columbia, MO, USA.

4. Max Planck Institute for Biogeochemistry, Jena, Germany.

5. Helmholtz Centre Potsdam, German Research Centre for Geosciences, Potsdam, Germany.

6. Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, CA, USA.

7. Consulting for Statistics, Computing, and Analytics Research, University of Michigan, Ann Arbor, MI, USA.

8. Optics of Photosynthesis Laboratory, Department of Forest Sciences, University of Helsinki, Helsinki, Finland.

9. Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN, USA.

10. Environmental Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.

11. Faculty of Agriculture and Environment, School of Life and Environmental Science, The University of Sydney, Sydney, Australia.

Abstract

INTRODUCTION Reliable estimation of gross primary production (GPP) from landscape to global scales is pivotal to a wide range of ecological research areas, such as carbon-climate feedbacks, and agricultural applications, such as crop yield and drought monitoring. However, measuring GPP at these scales remains a major challenge. Solar-induced chlorophyll fluorescence (SIF) is a signal emitted directly from the core of photosynthetic machinery. SIF integrates complex plant physiological functions in vivo to reflect photosynthetic dynamics in real time. The advent of satellite SIF observation promises a new era in global photosynthesis research. The Orbiting Carbon Observatory-2 (OCO-2) SIF product is a serendipitous but critically complementary by-product of OCO-2’s primary mission target—atmospheric column CO 2 ( X CO 2 ). OCO-2 SIF removes some important roadblocks that prevent wide and in-depth applications of satellite SIF data sets and offers new opportunities for studying the SIF-GPP relationship and vegetation functional gradients at different spatiotemporal scales. RATIONALE Compared with earlier satellite missions with SIF capability, the OCO-2 SIF product has substantially improved spatial resolution, data acquisition, and retrieval precision. These improvements allow satellite SIF data to be validated, for the first time, directly against ground and airborne measurements and also used to investigate the SIF-GPP relationship and terrestrial ecosystem functional dynamics with considerably better spatiotemporal credibility. RESULTS Coordinated airborne measurements of SIF with the Chlorophyll Fluorescence Imaging Spectrometer (CFIS) were used to validate OCO-2 retrievals. The validation shows close agreement between OCO-2 and CFIS SIF, with a regression slope of 1.02 and R 2 of 0.71. Landscape gradients in SIF emission, corresponding to differences in vegetation types, were clearly delineated by OCO-2, a capability that was lacking in previous satellite missions. The SIF-GPP relationships at eddy covariance flux sites in the vicinity of OCO-2 orbital tracks were found to be more consistent across biomes than previously suggested. Finally, empirical orthogonal function (EOF) analyses on OCO-2 SIF and available GPP products show highly consistent spatiotemporal correspondence in their leading EOF modes across the globe, suggesting that SIF and GPP are governed by similar dynamics and controlled by similar environmental and biological conditions. CONCLUSION OCO-2 represents a major advance in satellite SIF remote sensing. Our analyses suggest that SIF is a powerful proxy for GPP at multiple spatiotemporal scales and that high-quality satellite SIF is of central importance to studying terrestrial ecosystems and the carbon cycle. Although the possibility of a universal SIF-GPP relationship across different biome types cannot be dismissed, in-depth process-based studies are needed to unravel the true nature of covariations between SIF and GPP. Of critical importance in such efforts are the potential coordinated dynamics between the light-use efficiencies of CO 2 assimilation and fluorescence emission in response to changes in climate and vegetation characteristics. Eventual synergistic uses of SIF with atmospheric CO 2 enabled by OCO-2 will lead to more reliable estimates of terrestrial carbon sources and sinks—when, where, why, and how carbon is exchanged between land and atmosphere—as well as a deeper understanding of carbon-climate feedbacks. The marked ecological gradients depicted by OCO-2’s high-resolution SIF measurements along a transect of temperate deciduous forests, crops, and urban area from Indiana to suburban Chicago, Illinois.

Funder

U.S. Department of Energy

NASA

Academy of Finland

The Australian Government National Collaborative Research Infrastructure Strategy

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3