Affiliation:
1. Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
Abstract
Metal Manipulation
Reducing the grain size below 100 micrometers can vastly improve the properties of a metal. However, these nanocrystalline metals are not thermally stable; at elevated temperatures the grains will grow and merge. Alloying with a second metal to slow grain growth can slow down this process, which has shown some success on a trial-and-error basis.
Chookajorn
et al.
(p.
951
; see the Perspective by
Weertman
) now provide a theoretical framework to create stability maps to identify potential alloys with the greatest thermal stability. For tungsten, counterintuitively, the theory suggests that atoms with the largest size differential or lowest solubility are not the best alloying choice. Indeed, an alloy of tungsten and titanium was processed more easily than pure nanocrystalline tungsten and also showed better stability at high temperatures.
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
760 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献