Cell-specific transcriptional control of mitochondrial metabolism by TIF1γ drives erythropoiesis

Author:

Rossmann Marlies P.12ORCID,Hoi Karen12,Chan Victoria12ORCID,Abraham Brian J.3ORCID,Yang Song2,Mullahoo James4ORCID,Papanastasiou Malvina4ORCID,Wang Ying5,Elia Ilaria6ORCID,Perlin Julie R.2ORCID,Hagedorn Elliott J.2ORCID,Hetzel Sara7,Weigert Raha7ORCID,Vyas Sejal6,Nag Partha P.4,Sullivan Lucas B.8ORCID,Warren Curtis R.9,Dorjsuren Bilguujin12ORCID,Greig Eugenia Custo12,Adatto Isaac12ORCID,Cowan Chad A.9,Schreiber Stuart L.4ORCID,Young Richard A.310ORCID,Meissner Alexander147ORCID,Haigis Marcia C.6ORCID,Hekimi Siegfried5ORCID,Carr Steven A.4ORCID,Zon Leonard I.12ORCID

Affiliation:

1. Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 01238, USA.

2. Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA.

3. Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.

4. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.

5. Department of Biology, McGill University, Montréal, Québec H3A 1B1, Canada.

6. Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.

7. Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.

8. Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.

9. Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.

10. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Abstract

Metabolic pathway regulates cell fate Lineage-specific regulators direct cell fate decisions, but the precise mechanisms are not well known. Using an in vivo chemical suppressor screen of a bloodless zebrafish mutant, Rossmann et al. show that the lineage-specific chromatin factor tif1γ directly regulates mitochondrial genes to drive red blood cell differentiation. Loss of tif1γ reduces coenzyme Q synthesis and function, impeding mitochondrial respiration and leading to epigenetic alterations and repression of erythropoiesis. The loss of blood in the mutant fish can be rescued by the addition of coenzyme Q. This work establishes a mechanism by which a chromatin factor tunes a metabolic pathway in a tissue-specific manner. Science , this issue p. 716

Funder

National Heart, Lung, and Blood Institute

National Human Genome Research Institute

National Cancer Institute

National Institute of General Medical Sciences

Cancer Research Institute

Canadian Institutes of Health Research

National Institute of Diabetes and Digestive and Kidney Diseases

Harvard Catalyst

American Lebanese Syrian Associated Charities

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Metabolic regulation of erythrocyte development and disorders;Experimental Hematology;2024-03

2. Mitochondrial regulation in stem cells;Trends in Cell Biology;2023-10

3. Coenzyme Q biochemistry and biosynthesis;Trends in Biochemical Sciences;2023-05

4. Hippo pathway and Bonus control developmental cell fate decisions in the Drosophila eye;Developmental Cell;2023-03

5. TRIM proteins in breast cancer: Function and mechanism;Biochemical and Biophysical Research Communications;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3