De Haas–van Alphen spectroscopy and magnetic breakdown in moiré graphene

Author:

Bocarsly Matan1ORCID,Uzan Matan1ORCID,Roy Indranil1ORCID,Grover Sameer1ORCID,Xiao Jiewen1ORCID,Dong Zhiyu2ORCID,Labendik Mikhail1,Uri Aviram2ORCID,Huber Martin E.3ORCID,Myasoedov Yuri1ORCID,Watanabe Kenji4ORCID,Taniguchi Takashi5ORCID,Yan Binghai1ORCID,Levitov Leonid S.2ORCID,Zeldov Eli1ORCID

Affiliation:

1. Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.

2. Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

3. Departments of Physics and Electrical Engineering, University of Colorado Denver, Denver, CO 80217, USA.

4. Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan.

5. Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan.

Abstract

Quantum oscillations originating from the quantization of electron cyclotron orbits provide sensitive diagnostics of electron bands and interactions. We report on nanoscale imaging of the thermodynamic magnetization oscillations caused by the de Haas–van Alphen effect in moiré graphene. Scanning by means of superconducting quantum interference device (SQUID)–on-tip in Bernal bilayer graphene crystal axis-aligned to hexagonal boron nitride reveals large magnetization oscillations with amplitudes reaching 500 Bohr magneton per electron in weak magnetic fields, unexpectedly low frequencies, and high sensitivity to superlattice filling fraction. The oscillations allow us to reconstruct the complex band structure, revealing narrow moiré bands with multiple overlapping Fermi surfaces separated by unusually small momentum gaps. We identified sets of oscillations that violate the textbook Onsager Fermi surface sum rule, signaling formation of broad-band particle-hole superposition states induced by coherent magnetic breakdown.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3