Partitioning of Histone H3-H4 Tetramers During DNA Replication–Dependent Chromatin Assembly

Author:

Xu Mo12,Long Chengzu2,Chen Xiuzhen23,Huang Chang24,Chen She2,Zhu Bing2

Affiliation:

1. Graduate Program, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, People’s Republic of China.

2. National Institute of Biological Sciences, 7 Science Park Road, Zhong Guan Cun Life Science Park, Beijing 102206, People’s Republic of China.

3. Life Science College, Beijing Normal University, Beijing 100875, People’s Republic of China.

4. Department of Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, People’s Republic of China.

Abstract

Histone Inheritance Chromatin, the packaging material for eukaryotic genomes, is a potential repository for epigenetic information. The core structure of chromatin is the nucleosome, which consists of an octamer of histone proteins, two dimers each of histones H2A and H2B, and histones 3 and 4. Histones 3 and 4, in particular, carry a series of covalent modifications presumed to be passed on through cell division. Using mass spectrometry of tagged and isotope labeled histones, Xu et al. (p. 94 ; see the Perspective by Ray-Gallet and Almouzni ) followed the inheritance of the histones themselves through mitosis. The H2A-H2B dimers were inherited randomly through cell division, correlating with their lack of major covalent marks. In comparison, replication-deposited H3.1-H4 dimers did not separate through cell division, implying that H3 and H4 histone modifications might be maintained by copying from neighboring preexisting histones. Intriguingly, up to one-quarter of the nonreplication-deposited H3.3-H4 dimers, which mark active chromatin, did split during cell division.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3