Economics in the age of big data

Author:

Einav Liran12,Levin Jonathan12

Affiliation:

1. Department of Economics, Stanford University, Stanford, CA 94305, USA.

2. National Bureau of Economic Research, 1050 Massachusetts Avenue, Cambridge, MA 02138, USA.

Abstract

Background Economic science has evolved over several decades toward greater emphasis on empirical work. The data revolution of the past decade is likely to have a further and profound effect on economic research. Increasingly, economists make use of newly available large-scale administrative data or private sector data that often are obtained through collaborations with private firms, giving rise to new opportunities and challenges. Advances These new data are affecting economic research along several dimensions. Many fields have shifted from a reliance on relatively small-sample government surveys to administrative data with universal or near-universal population coverage. This shift is transformative, as it allows researchers to rigorously examine variation in wages, health, productivity, education, and other measures across different subpopulations; construct consistent long-run statistical indices; generate new quasi-experimental research designs; and track diverse outcomes from natural and controlled experiments. Perhaps even more notable is the expansion of private sector data on economic activity. These data, sometimes available from public sources but other times obtained through data-sharing agreements with private firms, can help to create more granular and real-time measurement of aggregate economic statistics. The data also offer researchers a look inside the “black box” of firms and markets by providing meaningful statistics on economic behavior such as search and information gathering, communication, decision-making, and microlevel transactions. Collaborations with data-oriented firms also create new opportunities to conduct and evaluate randomized experiments. Economic theory plays an important role in the analysis of large data sets with complex structure. It can be difficult to organize and study this type of data (or even to decide which variables to construct) without a simplifying conceptual framework, which is where economic models become useful. Better data also allow for sharper tests of existing models and tests of theories that had previously been difficult to assess. Outlook The advent of big data is already allowing for better measurement of economic effects and outcomes and is enabling novel research designs across a range of topics. Over time, these data are likely to affect the types of questions economists pose, by allowing for more focus on population variation and the analysis of a broader range of economic activities and interactions. We also expect economists to increasingly adopt the large-data statistical methods that have been developed in neighboring fields and that often may complement traditional econometric techniques. These data opportunities also raise some important challenges. Perhaps the primary one is developing methods for researchers to access and explore data in ways that respect privacy and confidentiality concerns. This is a major issue in working with both government administrative data and private sector firms. Other challenges include developing the appropriate data management and programming capabilities, as well as designing creative and scalable approaches to summarize, describe, and analyze large-scale and relatively unstructured data sets. These challenges notwithstanding, the next few decades are likely to be a very exciting time for economic research.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 329 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3