Affiliation:
1. Department of Economics, Stanford University, Stanford, CA 94305, USA.
2. National Bureau of Economic Research, 1050 Massachusetts Avenue, Cambridge, MA 02138, USA.
Abstract
Background
Economic science has evolved over several decades toward greater emphasis on empirical work. The data revolution of the past decade is likely to have a further and profound effect on economic research. Increasingly, economists make use of newly available large-scale administrative data or private sector data that often are obtained through collaborations with private firms, giving rise to new opportunities and challenges.
Advances
These new data are affecting economic research along several dimensions. Many fields have shifted from a reliance on relatively small-sample government surveys to administrative data with universal or near-universal population coverage. This shift is transformative, as it allows researchers to rigorously examine variation in wages, health, productivity, education, and other measures across different subpopulations; construct consistent long-run statistical indices; generate new quasi-experimental research designs; and track diverse outcomes from natural and controlled experiments.
Perhaps even more notable is the expansion of private sector data on economic activity. These data, sometimes available from public sources but other times obtained through data-sharing agreements with private firms, can help to create more granular and real-time measurement of aggregate economic statistics. The data also offer researchers a look inside the “black box” of firms and markets by providing meaningful statistics on economic behavior such as search and information gathering, communication, decision-making, and microlevel transactions. Collaborations with data-oriented firms also create new opportunities to conduct and evaluate randomized experiments.
Economic theory plays an important role in the analysis of large data sets with complex structure. It can be difficult to organize and study this type of data (or even to decide which variables to construct) without a simplifying conceptual framework, which is where economic models become useful. Better data also allow for sharper tests of existing models and tests of theories that had previously been difficult to assess.
Outlook
The advent of big data is already allowing for better measurement of economic effects and outcomes and is enabling novel research designs across a range of topics. Over time, these data are likely to affect the types of questions economists pose, by allowing for more focus on population variation and the analysis of a broader range of economic activities and interactions. We also expect economists to increasingly adopt the large-data statistical methods that have been developed in neighboring fields and that often may complement traditional econometric techniques.
These data opportunities also raise some important challenges. Perhaps the primary one is developing methods for researchers to access and explore data in ways that respect privacy and confidentiality concerns. This is a major issue in working with both government administrative data and private sector firms. Other challenges include developing the appropriate data management and programming capabilities, as well as designing creative and scalable approaches to summarize, describe, and analyze large-scale and relatively unstructured data sets. These challenges notwithstanding, the next few decades are likely to be a very exciting time for economic research.
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
329 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献