Induction of Protein Secretory Pathway Is Required for Systemic Acquired Resistance

Author:

Wang Dong1,Weaver Natalie D.1,Kesarwani Meenu1,Dong Xinnian1

Affiliation:

1. Developmental, Cell and Molecular Biology Group, Department of Biology, Post Office Box 91000, Duke University, Durham, NC 27708, USA.

Abstract

In plants, systemic acquired resistance (SAR) is established as a result of NPR1-regulated expression of pathogenesis-related ( PR ) genes. Using gene expression profiling in Arabidopsis , we found that in addition to controlling the expression of PR genes, NPR1 also directly controls the expression of the protein secretory pathway genes. Up-regulation of these genes is essential for SAR, because mutations in some of them diminished the secretion of PR proteins (for example, PR1), resulting in reduced resistance. We provide evidence that NPR1 coordinately regulates these secretion-related genes through a previously undescribed cis-element. Activation of this cis-element is controlled by a transcription factor that is translocated into the nucleus upon SAR induction.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3