Deciphering the Cross-Talk of Implantation: Advances and Challenges

Author:

Paria B. C.12,Reese Jeff12,Das Sanjoy K.23,Dey S. K.2

Affiliation:

1. Department of Pediatrics,

2. Department of Molecular and Integrative Physiology,

3. Department of Obstetrics and Gynecology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160–7336, USA.

Abstract

Implantation involves a series of steps leading to an effective reciprocal signaling between the blastocyst and the uterus. Except for a restricted period when ovarian hormones induce a uterine receptive phase, the uterus is an unfavorable environment for blastocyst implantation. Because species-specific variations in implantation strategies exist, these differences preclude the formulation of a unifying theme for the molecular basis of this event. However, an increased understanding of mammalian implantation has been gained through the use of the mouse model. This review summarizes recognized signaling cascades and new research in mammalian implantation, based primarily on available genetic and molecular evidence from implantation studies in the mouse. Although the identification of new molecules associated with implantation in various species provides valuable insight, important questions remain regarding the common molecular mechanisms that govern this process. Understanding the mechanisms of implantation promises to help alleviate infertility, enhance fetal health, and improve contraceptive design. The success of any species depends on its reproductive efficiency. For sexual reproduction, an egg and sperm must overcome many obstacles to fuse and co-mingle their genetic material at fertilization. The zygote develops into a blastocyst with two cell lineages (the inner cell mass and the trophectoderm), migrates within the reproductive tract, and ultimately implants into a transiently permissive host tissue, the uterus. However, the molecular basis of the road map connecting the blastocyst with the endometrium across species is diverse (1) and not fully understood. Recent advances have identified numerous molecules involved in implantation (1–4), yet new discoveries have not yielded a unifying scheme for the mechanisms of implantation.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3