Mechanisms of bacterial persistence during stress and antibiotic exposure

Author:

Harms Alexander1,Maisonneuve Etienne1,Gerdes Kenn1

Affiliation:

1. Center of Excellence for Bacterial Stress Response and Persistence (BASP), Department of Biology, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark.

Abstract

BACKGROUND The escalating crisis of multidrug resistance is raising fears of untreatable infections caused by bacterial “superbugs.” However, many patients already suffer from infections that are effectively untreatable due to innate bacterial mechanisms for persistence. This phenomenon is caused by the formation of specialized persister cells that evade antibiotic killing and other stresses by entering a physiologically dormant state, irrespective of whether they possess genes enabling antibiotic resistance. The recalcitrance of persister cells is a major cause of prolonged and recurrent courses of infection that can eventually lead to complete antibiotic treatment failure. Regularly growing bacteria differentiate into persister cells stochastically at a basal rate, but this phenotypic conversion can also be induced by environmental cues indicative of imminent threats for the bacteria. Size and composition of the persister subpopulation in bacterial communities are largely controlled by stress signaling pathways, such as the general stress response or the SOS response, in conjunction with the second messenger (p)ppGpp that is almost always involved in persister formation. Consequently, persister formation is stimulated under conditions that favor the activation of these signaling pathways. Such conditions include bacterial biofilms and hostile host environments, as well as response to damage caused by sublethal concentrations of antibiotics. ADVANCES The limited comprehensive understanding of persister formation and survival is a critical issue in controlling persistent infections. However, recent work in the field has uncovered the molecular architecture of several cellular pathways underlying bacterial persistence, as well as the functional interactions that generate heterogeneous populations of persister cells. These results confirm the long-standing notion that persistence is intimately connected to slow growth or dormancy in the sense that a certain level of physiological quiescence is attained. Most prominently, the central role of toxin-antitoxin (TA) modules has been explained in considerable detail. In the model organism Escherichia coli K-12, two major pathways of persister formation via TA modules are both controlled by (p)ppGpp and involve toxin HokB and a panel of mRNA endonuclease toxins, respectively. Whereas activation of the membrane-associated toxin HokB depends on the enigmatic (GTPase) guanosine triphosphatase Obg and causes persister formation by abolishing the proton-motive force, mRNA endonuclease toxins are activated through antitoxin degradation by protease Lon and globally inhibit translation. In addition to these two pathways, toxin TisB is activated in response to DNA damage by the SOS response and promotes persister formation in a manner similar to HokB. Beyond TA modules, many additional factors (such as cellular energy metabolism or drug efflux) have been found to contribute to persister formation and survival, but their position in particular molecular pathways is often unclear. Altogether, this diversity of mechanisms drives the formation of a highly heterogeneous ensemble of persister cells that displays multistress and multidrug tolerance as the root of the recalcitrance of persistent infections. OUTLOOK Though recent advances in the field have greatly expanded our understanding of the molecular mechanisms underlying persister formation, important facets have remained elusive and should be addressed in future studies. One example is the upstream signaling input into the pathways mediating bacterial persister formation (e.g., the nature of the pacemaker driving stochastic persister formation). Similarly, it is often not well understood how—beyond the general idea of dormancy—persister cells can survive the action of lethal antibiotics. Finally, one curious aspect of the persister field is recurrent inconsistency between the results obtained by different groups. We speculate that these variations may be linked to subtle differences in experimental procedures inducing separate yet partially redundant pathways of persister formation. It is evident that the elucidation of this phenomenon may not only consolidate progress in the field but also offer the chance to gain insights into the molecular basis and control of bacterial persistence. Bacterial persisters defy antibiotic treatment. Persister cells are phenotypic variants of regularly growing bacteria and survive lethal antibiotic treatment in a nongrowing, dormant state. Upon termination of treatment, the resuscitation of persister cells can replenish the population. Our Review focuses on the diverse molecular mechanisms that underlie bacterial persister formation and drive the heterogeneity of these cells. PMF, proton-motive force.

Funder

Danish National Research Foundation

Novo Nordisk Foundation Laureate Research

European Research Council Advanced Investigator

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference134 articles.

1. World Health Organization (WHO) “Antimicrobial resistance: Global report on surveillance 2014 (WHO 2014); www.who.int/drugresistance/documents/surveillancereport/en/.

2. Role of persister cells in chronic infections: clinical relevance and perspectives on anti-persister therapies

3. A problem of persistence: still more questions than answers?

4. Non-inherited antibiotic resistance

5. Persister Cells

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3