Wigner molecular crystals from multielectron moiré artificial atoms

Author:

Li Hongyuan123ORCID,Xiang Ziyu123ORCID,Reddy Aidan P.4ORCID,Devakul Trithep4ORCID,Sailus Renee5ORCID,Banerjee Rounak5ORCID,Taniguchi Takashi6ORCID,Watanabe Kenji7ORCID,Tongay Sefaattin5ORCID,Zettl Alex138ORCID,Fu Liang4ORCID,Crommie Michael F.138ORCID,Wang Feng138ORCID

Affiliation:

1. Department of Physics, University of California at Berkeley, Berkeley, CA, USA.

2. Graduate Group in Applied Science and Technology, University of California at Berkeley, Berkeley, CA, USA.

3. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

4. Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA

5. School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA.

6. Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan.

7. Research Center for Electronic and Optical Materials, National Institute for Materials Science, Tsukuba, Japan.

8. Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

Abstract

Semiconductor moiré superlattices provide a versatile platform to engineer quantum solids composed of artificial atoms on moiré sites. Previous studies have mostly focused on the simplest correlated quantum solid—the Fermi-Hubbard model—in which intra-atom interactions are simplified to a single onsite repulsion energy U . Here we report the experimental observation of Wigner molecular crystals emerging from multielectron artificial atoms in twisted bilayer tungsten disulfide moiré superlattices. Using scanning tunneling microscopy, we demonstrate that Wigner molecules appear in multielectron artificial atoms when Coulomb interactions dominate. The array of Wigner molecules observed in a moiré superlattice comprises a crystalline phase of electrons: the Wigner molecular crystal, which is shown to be highly tunable through mechanical strain, moiré period, and carrier charge type.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3