Redefining near-unity luminescence in quantum dots with photothermal threshold quantum yield

Author:

Hanifi David A.1ORCID,Bronstein Noah D.2ORCID,Koscher Brent A.23ORCID,Nett Zach2ORCID,Swabeck Joseph K.23ORCID,Takano Kaori4ORCID,Schwartzberg Adam M.5ORCID,Maserati Lorenzo5ORCID,Vandewal Koen6ORCID,van de Burgt Yoeri7ORCID,Salleo Alberto1ORCID,Alivisatos A. Paul238ORCID

Affiliation:

1. Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.

2. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

3. Department of Chemistry and Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA.

4. Materials R&D Group, HPM Research and Development Department, High Performance Materials Company, JXTG Nippon Oil & Energy Corporation, 8 Chidori-Cho, Naka-ku, Yokohama, Kanagawa, 231-0815, Japan.

5. The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

6. IMO-IMOMEC, and Institute for Materials Research, Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium.

7. Microsystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612AJ Eindhoven, Netherlands.

8. Kavli Energy NanoScience Institute, Berkeley, CA 94720, USA.

Abstract

Superefficient light emission A challenge to improving synthesis methods for superefficient light-emitting semiconductor nanoparticles is that current analytical methods cannot measure efficiencies above 99%. Hanifi et al. used photothermal deflection spectroscopy to measure very small nonradiative decay components in quantum dot photoluminescence. The method allowed them to tune the synthesis of CdSe/CdS quantum dots so that the external luminescent efficiencies exceeded 99.5%. This is important for applications that require an absolute minimum amount of photon energy to be lost as heat, such as photovoltaic luminescent concentrators. Science , this issue p. 1199

Funder

U.S. Department of Energy

European Research Council

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3