Optimizing Sound Features for Cortical Neurons
Author:
deCharms R. Christopher1, Blake David T.1, Merzenich Michael M.1
Affiliation:
1. Keck Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94143–0732, USA.
Abstract
The brain's cerebral cortex decomposes visual images into information about oriented edges, direction and velocity information, and color. How does the cortex decompose perceived sounds? A reverse correlation technique demonstrates that neurons in the primary auditory cortex of the awake primate have complex patterns of sound-feature selectivity that indicate sensitivity to stimulus edges in frequency or in time, stimulus transitions in frequency or intensity, and feature conjunctions. This allows the creation of classes of stimuli matched to the processing characteristics of auditory cortical neurons. Stimuli designed for a particular neuron's preferred feature pattern can drive that neuron with higher sustained firing rates than have typically been recorded with simple stimuli. These data suggest that the cortex decomposes an auditory scene into component parts using a feature-processing system reminiscent of that used for the cortical decomposition of visual images.
Publisher
American Association for the Advancement of Science (AAAS)
Subject
Multidisciplinary
Reference32 articles.
1. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex 2. J. P. Jones, L. A. Palmer, J. Neurophysiol. 58, 1187 (1987); R. C. Reid, R. E. Soodak, R. M. Shapley, ibid 66, 505 (1991); G. C. DeAngelis, I. Ohzawa, R. D. Freeman, ibid.69, 1091 (1993); ibid., p. 1118; Trends Neurosci. 18, 451 (1995); R. C. Reid, J. M. Alonso, Nature 378, 281 (1995); Ringach D. L., Hawken M. J., Shapley R., ibid 387, 281 (1997). 3. N. Suga, H. Niwa, I. Taniguchi, D. Margoliash, J. Neurophysiol. 58, 643 (1987); M. Kawasaki, D. Margoliash, N. Suga, ibid 59, 623 (1988); N. Suga, J. Exp. Biol. 146, 277 (1989); H. Riquimaroux, S. J. Gaioni, N. Suga, Science 251, 565 (1991); S. P. Dear, J. Fritz, T. Haresign, M. Ferragamo, J. A. Simmons, J. Neurophysiol. 70, 1988 (1993); Fitzpatrick D. C., Kanwal J. S., Butman J. A., Suga N., J. Neurosci. 13, 931 (1993); J. A. Simmons, J. Comp. Physiol. A 172, 533 (1993). 4. E. I. Knudsen, S. duLac, S. D. Esterly, Annu. Rev. Neurosci. 10, 41 (1987); Knudsen E. I., Brainard M. S., ibid 18, 19 (1995). 5. D. Margoliash, J. Neurosci. 3, 1039 (1983); M. Konishi, Brain Behav. Evol. 44, 279 (1994); M. S. Lewicki, M. Konishi, Proc. Natl. Acad. Sci. U.S.A. 92, 5582 (1995); S. J. Chew, D. S. Vicario, F. Nottebohm, Science 274, 1909 (1996); Doupe A. J., J. Neurosci. 17, 1147 (1997).
Cited by
376 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|