Tunable excitons in bilayer graphene

Author:

Ju Long12ORCID,Wang Lei12ORCID,Cao Ting3ORCID,Taniguchi Takashi4,Watanabe Kenji4ORCID,Louie Steven G.35ORCID,Rana Farhan6ORCID,Park Jiwoong17,Hone James8ORCID,Wang Feng359ORCID,McEuen Paul L.12ORCID

Affiliation:

1. Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY 14853, USA.

2. Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA.

3. Department of Physics, University of California, Berkeley, CA 94720, USA.

4. National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan.

5. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

6. School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA.

7. Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.

8. Department of Mechanical Engineering, Columbia University, New York, New York 10027, USA.

9. Kavli Energy NanoSciences Institute at the University of California, Berkeley, and the Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

Abstract

Pairing up electrons and holes in bilayer graphene Excitons—bound pairs of electron and holes in solids—can be harnessed for optoelectronic applications. Being able to tune the exciton energy would bring functional flexibility to such devices. Although tunable excitons have been predicted to form in bilayer graphene, observing them experimentally has been difficult. Ju et al. used high-quality bilayer graphene samples sandwiched between layers of hexagonal boron nitride to observe excitons in this material. Exciton energy was tuned across a large range by controlling the gate voltages. Science , this issue p. 907

Funder

Air Force Office of Scientific Research

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 120 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3