Electrically driven proton transfer promotes Brønsted acid catalysis by orders of magnitude

Author:

Westendorff Karl S.1ORCID,Hülsey Max J.2ORCID,Wesley Thejas S.1ORCID,Román-Leshkov Yuriy12ORCID,Surendranath Yogesh12ORCID

Affiliation:

1. Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

2. Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Abstract

Electric fields play a key role in enzymatic catalysis and can enhance reaction rates by 100,000-fold, but the same rate enhancements have yet to be achieved in thermochemical heterogeneous catalysis. In this work, we probe the influence of catalyst potential and interfacial electric fields on heterogeneous Brønsted acid catalysis. We observed that variations in applied potential of ~380 mV led to a 100,000-fold rate enhancement for 1-methylcyclopentanol dehydration, which was catalyzed by carbon-supported phosphotungstic acid. Mechanistic studies support a model in which the interfacial electrostatic potential drop drives quasi-equilibrated proton transfer to the adsorbed substrate prior to rate-limiting C–O bond cleavage. Large increases in rate with potential were also observed for the same reaction catalyzed by Ti/TiO y H x and for the Friedel Crafts acylation of anisole with acetic anhydride by carbon-supported phosphotungstic acid.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3