A global transition to flash droughts under climate change

Author:

Yuan Xing12ORCID,Wang Yumiao12,Ji Peng12ORCID,Wu Peili3ORCID,Sheffield Justin4ORCID,Otkin Jason A.5ORCID

Affiliation:

1. School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China.

2. Key Laboratory of Hydrometeorological Disaster Mechanism and Warning of Ministry of Water Resources/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China.

3. Met Office Hadley Centre, Exeter EX1 3PB, UK.

4. Geography and Environmental Science, University of Southampton, Southampton SO17 1BJ, UK.

5. Cooperative Institute for Meteorological Satellite Studies, Space Science and Engineering Center, University of Wisconsin–Madison, Madison, WI 53706, USA.

Abstract

Flash droughts have occurred frequently worldwide, with a rapid onset that challenges drought monitoring and forecasting capabilities. However, there is no consensus on whether flash droughts have become the new normal because slow droughts may also increase. In this study, we show that drought intensification rates have sped up over subseasonal time scales and that there has been a transition toward more flash droughts over 74% of the global regions identified by the Intergovernmental Panel on Climate Change Special Report on Extreme Events during the past 64 years. The transition is associated with amplified anomalies of evapotranspiration and precipitation deficit caused by anthropogenic climate change. In the future, the transition is projected to expand to most land areas, with larger increases under higher-emission scenarios. These findings underscore the urgency for adapting to faster-onset droughts in a warmer future.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3