Microstructured Optical Fibers as High-Pressure Microfluidic Reactors

Author:

Sazio Pier J. A.12345,Amezcua-Correa Adrian12345,Finlayson Chris E.12345,Hayes John R.12345,Scheidemantel Thomas J.12345,Baril Neil F.12345,Jackson Bryan R.12345,Won Dong-Jin12345,Zhang Feng12345,Margine Elena R.12345,Gopalan Venkatraman12345,Crespi Vincent H.12345,Badding John V.12345

Affiliation:

1. Optoelectronics Research Centre, University of Southampton, Highfield, Southampton SO17 1BJ, UK.

2. Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA.

3. Department of Physics, Pennsylvania State University, University Park, PA 16802, USA.

4. Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA.

5. Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA.

Abstract

Deposition of semiconductors and metals from chemical precursors onto planar substrates is a well-developed science and technology for microelectronics. Optical fibers are an established platform for both communications technology and fundamental research in photonics. Here, we describe a hybrid technology that integrates key aspects of both engineering disciplines, demonstrating the fabrication of tubes, solid nanowires, coaxial heterojunctions, and longitudinally patterned structures composed of metals, single-crystal semiconductors, and polycrystalline elemental or compound semiconductors within microstructured silica optical fibers. Because the optical fibers are constructed and the functional materials are chemically deposited in distinct and independent steps, the full design flexibilities of both platforms can now be exploited simultaneously for fiber-integrated optoelectronic materials and devices.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference26 articles.

1. J. C. Knight, Nature424, 847 (2003).

2. M. Bayindir et al., Nature431, 826 (2004).

3. CVD of Compound Semiconductors: Precursor Synthesis Development and Applications 1997

4. C. R. Kurkjian, J. T. Krause, M. J. Matthewson, J. Lightwave Technol.7, 1360 (1989).

5. D. J. Richardson et al., Proceedings of 2005 Institute of Electronic and Electrical Engineers/Lasers and Electro-Optics Society Workshop on Fibres and Optical Passive Components, 1 (2005).

Cited by 411 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Double Polarization Peak Shift Sensitivity (DPPSS): An interrogation technique for a PCF SPR sensor;Optik;2024-03

2. ARF Dual-Channel Magnetic Field and Temperature Sensor Based on the SPR Effect;Plasmonics;2024-01-24

3. Semiconductor multimaterial optical fibers for biomedical applications;Semiconducting Polymer Materials for Biosensing Applications;2024

4. Nonlinear optical phenomena in subwavelength photonic nanowires;Fundamentals and Applications of Nonlinear Nanophotonics;2024

5. Subwavelength optical solitons;Fundamentals and Applications of Nonlinear Nanophotonics;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3